Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dibromido[(S)-2-(pyrrolidin-2-yl)-1Hbenzimidazole]zinc(II)

Wei Dai and Da-Wei Fu*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 19 June 2008; accepted 24 June 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.047; wR factor = 0.115; data-to-parameter ratio = 20.6.

The title compound, $[ZnBr_2(C_{11}H_{13}N_3)]$, was synthesized by hydrothermal reaction of ZnBr₂ and (S)-2-(pyrrolidin-2-yl)-1*H*-benzimidazole. The Zn^{II} atom has a distorted tetrahedral geometry and is coordinated by two N atoms from the chelating organic ligand and two terminal Br⁻ anions. In the crystal structure, molecules are linked into a chain along the [101] direction by N-H···Br and C-H···Br hydrogen bonds.

Related literature

For physical properties such as fluorescence and dielectric behaviors of metal-organic coordination compounds, see: Aminabhavi et al. (1986); Ye et al. (2008); Fu et al. (2007).

Experimental

Crystal data

[ZnBr₂(C₁₁H₁₃N₃)] $M_r = 412.43$ Monoclinic, $P2_1/n$ a = 8.953 (3) Å b = 11.668 (2) Å c = 13.318 (2) Å $\beta = 91.443 (3)^{\circ}$

V = 1390.9 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 7.49 \text{ mm}^{-1}$ T = 298 (2) K $0.30\,\times\,0.25\,\times\,0.15$ mm

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.459, \ T_{\max} = 0.982$ (expected range = 0.152 - 0.325)

13896 measured reflections 3179 independent reflections 2426 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.065$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	154 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
3179 reflections	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

2.3642 (8)	Zn1-N1	2.075 (4)
2.011 (3)	Zn1-Br2	2.3319 (7)
82.35 (14)	N2-Zn1-Br1	118.99 (11)
112.70 (10)	N1-Zn1-Br1	110.08 (11)
117.89 (10)	Br2-Zn1-Br1	112.03 (3)
	2.3642 (8) 2.011 (3) 82.35 (14) 112.70 (10) 117.89 (10)	2.3642 (8) Zn1-N1 2.011 (3) Zn1-Br2 82.35 (14) N2-Zn1-Br1 112.70 (10) N1-Zn1-Br1 117.89 (10) Br2-Zn1-Br1

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3C···Br1 ⁱ	0.86	2.74	3.516 (4)	150
$C4-H4A\cdots Br1^{ii}$	0.98	2.86	3.637 (5)	137
$C1 - H1A \cdots Cg1^{iii}$	0.97	2.78	3.673 (6)	153
Symmetry codes:	(i) $r = \frac{1}{2} = \frac{1}{2}$	$u \perp \frac{3}{2} = -\frac{1}{2}$	(ii) $-x - y \pm 2$	$-7 \perp 1$ (iii)

 $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$. Cg1 is the centroid of the C6–C11 ring.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear: data reduction: CrystalClear: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong, and a Excellent Doctoral Degree Foundation Grant from Southeast University to DWF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2621).

References

- Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125 - 128
- Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc. 129, 5346-5347.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.

supplementary materials

Acta Cryst. (2008). E64, m1016 [doi:10.1107/S1600536808019168]

Dibromido[(S)-2-(pyrrolidin-2-yl)-1H-benzimidazole]zinc(II)

W. Dai and D.-W. Fu

Comment

Metal-organic coordination compounds provide a class of complexes displaying interesting chemical and physical properties such as fluorescence and dielectric behaviors (Aminabhavi *et al.*, 1986; Ye *et al.*, 2008; Fu *et al.*, 2007). There has been very strong interest in employing crystal-engineering strategies to generate desirable materials by the hydrothermal reaction. Here we report the synthesis and crystal structure of the title compound.

The Zn^{II} atom has a distorted tetrahedral geometry (Table 1) and is coordinated by two N atoms from the chelating *S*-2-(pyrrolidin-2-yl)-1*H*-benzimidazole ligand and two terminal Br⁻ anions (Fig. 1).

In the crystal structure, N—H…Br and C—H…Br hydrogen bonds (Table 2) link the molecules into a chain along [1 0 1] (Fig.2).

Experimental

The homochiral ligand *S*-2-(pyrrolidin-2-yl)-1*H*-benzimidazole was synthesized by reaction of *S*-pyrrolidine-2-carboxylic acid and benzene-1,2-diamine according to the procedure described in the literature (Aminabhavi *et al.*, 1986). A mixture of *S*-2-(pyrrolidin-2-yl)-1*H*-benzimidazole (18.7 mg, 0.1 mmol), ZnBr₂ (33.9 mg, 0.1 mmol) and water (1 ml) sealed in a glass tube was maintained at 343 K. Crystals suitable for X-ray ananlysis were obtained after 3 d.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) and N-H = 0.91 Å with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Dibromido[(S)-2-(pyrrolidin-2-yl)-1H-benzimidazole]zinc(II)

 $F_{000} = 800$

 $\theta = 2.7-27.5^{\circ}$ $\mu = 7.49 \text{ mm}^{-1}$ T = 298 (2) KBlock, colourless $0.30 \times 0.25 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.970 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 3615 reflections

Crystal data
$[ZnBr_2(C_{11}H_{13}N_3)]$
$M_r = 412.43$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.953 (3) Å
<i>b</i> = 11.668 (2) Å
<i>c</i> = 13.318 (2) Å
$\beta = 91.443 \ (3)^{\circ}$
$V = 1390.9 (6) \text{ Å}^3$
Z = 4

Data collection

Rigaku Mercury2 diffractometer	3179 independent reflections
Radiation source: fine-focus sealed tube	2426 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.065$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -15 \rightarrow 15$
$T_{\min} = 0.459, \ T_{\max} = 0.982$	$l = -17 \rightarrow 17$
13896 measured reflections	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.0563P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$

154 parameters

 $\Delta \rho_{min} = -1.00 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.25768 (6)	0.93780 (4)	0.57154 (4)	0.04999 (18)
Zn1	0.13105 (6)	0.76113 (4)	0.55176 (4)	0.03634 (16)
Br2	0.20151 (7)	0.62945 (5)	0.67586 (4)	0.0600(2)
C6	0.1068 (5)	0.5895 (4)	0.2708 (3)	0.0378 (10)
N2	0.1146 (4)	0.6901 (3)	0.4143 (2)	0.0344 (8)
N1	-0.0955 (4)	0.7895 (3)	0.5261 (3)	0.0378 (8)
H10B	-0.1140	0.8650	0.5377	0.045*
N3	-0.0296 (4)	0.6401 (3)	0.2863 (3)	0.0391 (9)
НЗС	-0.1073	0.6357	0.2471	0.047*
C8	0.3041 (6)	0.4841 (5)	0.2047 (4)	0.0554 (14)
H8A	0.3427	0.4362	0.1559	0.066*
C5	-0.0198 (5)	0.6977 (4)	0.3735 (3)	0.0315 (9)
C11	0.1978 (5)	0.6223 (4)	0.3510 (3)	0.0354 (9)
C7	0.1572 (6)	0.5177 (4)	0.1952 (3)	0.0489 (12)
H7A	0.0955	0.4941	0.1419	0.059*
C3	-0.2915 (5)	0.6980 (5)	0.4237 (4)	0.0550 (13)
H3A	-0.3632	0.7284	0.3748	0.066*
H3B	-0.2771	0.6170	0.4107	0.066*
C10	0.3458 (6)	0.5868 (5)	0.3582 (4)	0.0508 (12)
H10A	0.4074	0.6090	0.4120	0.061*
С9	0.3976 (6)	0.5188 (5)	0.2844 (4)	0.0555 (14)
H9A	0.4967	0.4949	0.2869	0.067*
C1	-0.1969 (6)	0.7209 (5)	0.5893 (3)	0.0512 (13)
H1A	-0.2104	0.7573	0.6539	0.061*
H1B	-0.1578	0.6442	0.6002	0.061*
C4	-0.1416 (5)	0.7637 (4)	0.4201 (3)	0.0361 (10)
H4A	-0.1568	0.8357	0.3834	0.043*
C2	-0.3426 (6)	0.7174 (6)	0.5290 (4)	0.0631 (15)
H2A	-0.4059	0.6553	0.5510	0.076*
H2B	-0.3965	0.7892	0.5344	0.076*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0629 (3)	0.0386 (3)	0.0474 (3)	-0.0098 (2)	-0.0209 (2)	0.0027 (2)
Zn1	0.0395 (3)	0.0392 (3)	0.0299 (3)	-0.0022 (2)	-0.0093 (2)	-0.0028 (2)
Br2	0.0757 (4)	0.0521 (3)	0.0509 (3)	-0.0016 (3)	-0.0220 (3)	0.0139 (2)
C6	0.040 (2)	0.042 (2)	0.032 (2)	-0.001 (2)	-0.0023 (19)	-0.0055 (18)
N2	0.0326 (18)	0.041 (2)	0.0290 (17)	-0.0002 (16)	-0.0077 (15)	-0.0026 (15)
N1	0.041 (2)	0.0366 (19)	0.0357 (19)	-0.0010 (17)	-0.0034 (16)	-0.0067 (16)
N3	0.035 (2)	0.050 (2)	0.0319 (18)	-0.0031 (17)	-0.0084 (16)	-0.0051 (16)
C8	0.057 (3)	0.063 (3)	0.046 (3)	0.018 (3)	0.014 (3)	-0.013 (3)
C5	0.034 (2)	0.035 (2)	0.0255 (19)	-0.0055 (18)	-0.0032 (17)	0.0030 (17)
C11	0.031 (2)	0.041 (2)	0.033 (2)	-0.0023 (19)	-0.0051 (18)	-0.0002 (18)
C7	0.058 (3)	0.054 (3)	0.035 (2)	0.001 (3)	-0.004 (2)	-0.012 (2)
C3	0.035 (3)	0.077 (4)	0.053 (3)	-0.008 (3)	0.002 (2)	-0.015 (3)
C10	0.039 (3)	0.067 (3)	0.046 (3)	0.002 (3)	-0.008 (2)	-0.010 (2)
C9	0.041 (3)	0.076 (4)	0.050 (3)	0.014 (3)	0.004 (2)	-0.006 (3)
C1	0.048 (3)	0.068 (3)	0.038 (3)	-0.009 (3)	0.004 (2)	0.004 (2)
C4	0.033 (2)	0.044 (3)	0.031 (2)	0.0022 (19)	-0.0080 (18)	0.0031 (18)
C2	0.046 (3)	0.087 (4)	0.057 (3)	-0.002 (3)	0.002 (3)	0.004 (3)

Geometric parameters (Å, °)

Br1—Zn1	2.3642 (8)	C5—C4	1.484 (6)
Zn1—N2	2.011 (3)	C11—C10	1.390 (6)
Zn1—N1	2.075 (4)	С7—Н7А	0.93
Zn1—Br2	2.3319 (7)	C3—C2	1.504 (7)
C6—N3	1.377 (6)	C3—C4	1.547 (6)
C6—C11	1.382 (6)	С3—НЗА	0.97
C6—C7	1.393 (6)	С3—Н3В	0.97
N2—C5	1.311 (5)	С10—С9	1.354 (7)
N2—C11	1.387 (5)	C10—H10A	0.93
N1—C1	1.488 (6)	С9—Н9А	0.93
N1—C4	1.492 (5)	C1—C2	1.515 (7)
N1—H10B	0.91	C1—H1A	0.97
N3—C5	1.343 (5)	C1—H1B	0.97
N3—H3C	0.86	C4—H4A	0.98
C8—C7	1.376 (7)	C2—H2A	0.97
C8—C9	1.395 (7)	C2—H2B	0.97
C8—H8A	0.93		
N2—Zn1—N1	82.35 (14)	С6—С7—Н7А	122.2
N2—Zn1—Br2	112.70 (10)	C2—C3—C4	103.8 (4)
N1—Zn1—Br2	117.89 (10)	С2—С3—НЗА	111.0
N2—Zn1—Br1	118.99 (11)	С4—С3—НЗА	111.0
N1—Zn1—Br1	110.08 (11)	С2—С3—Н3В	111.0
Br2—Zn1—Br1	112.03 (3)	С4—С3—Н3В	111.0
N3—C6—C11	105.8 (4)	НЗА—СЗ—НЗВ	109.0

N3—C6—C7	132.1 (4)	C9—C10—C11	118.0 (5)
C11—C6—C7	122.0 (4)	C9—C10—H10A	121.0
C5—N2—C11	106.7 (3)	C11-C10-H10A	121.0
C5—N2—Zn1	113.3 (3)	C10—C9—C8	120.8 (5)
C11—N2—Zn1	139.5 (3)	С10—С9—Н9А	119.6
C1—N1—C4	105.6 (3)	С8—С9—Н9А	119.6
C1—N1—Zn1	115.4 (3)	N1—C1—C2	104.1 (4)
C4—N1—Zn1	111.7 (3)	N1—C1—H1A	110.9
C1—N1—H10B	108.0	C2—C1—H1A	110.9
C4—N1—H10B	108.0	N1—C1—H1B	110.9
Zn1—N1—H10B	108.0	C2—C1—H1B	110.9
C5—N3—C6	107.8 (3)	H1A—C1—H1B	109.0
C5—N3—H3C	126.1	C5—C4—N1	108.1 (3)
C6—N3—H3C	126.1	C5—C4—C3	113.8 (4)
С7—С8—С9	122.8 (5)	N1—C4—C3	106.9 (3)
С7—С8—Н8А	118.6	C5—C4—H4A	109.3
С9—С8—Н8А	118.6	N1—C4—H4A	109.3
N2—C5—N3	111.4 (4)	C3—C4—H4A	109.3
N2—C5—C4	122.6 (4)	C3—C2—C1	102.7 (4)
N3—C5—C4	126.0 (4)	С3—С2—Н2А	111.2
C6—C11—N2	108.2 (4)	C1—C2—H2A	111.2
C6—C11—C10	120.8 (4)	C3—C2—H2B	111.2
N2-C11-C10	130.9 (4)	C1—C2—H2B	111.2
C8—C7—C6	115.6 (4)	H2A—C2—H2B	109.1
С8—С7—Н7А	122.2		
N1—Zn1—N2—C5	2.2 (3)	Zn1—N2—C11—C6	170.4 (3)
Br2—Zn1—N2—C5	119.3 (3)	C5-N2-C11-C10	-179.8 (5)
Br1—Zn1—N2—C5	-106.5 (3)	Zn1-N2-C11-C10	-9.2 (8)
N1—Zn1—N2—C11	-168.0 (5)	C9—C8—C7—C6	0.1 (8)
Br2—Zn1—N2—C11	-50.9 (5)	N3—C6—C7—C8	179.6 (5)
Br1—Zn1—N2—C11	83.2 (5)	C11—C6—C7—C8	-1.4 (7)
N2—Zn1—N1—C1	110.8 (3)	C6—C11—C10—C9	-0.2 (8)
Br2—Zn1—N1—C1	-0.8 (3)	N2-C11-C10-C9	179.3 (5)
Br1—Zn1—N1—C1	-131.0 (3)	C11—C10—C9—C8	-1.1 (8)
N2—Zn1—N1—C4	-9.8 (3)	C7—C8—C9—C10	1.2 (9)
Br2—Zn1—N1—C4	-121.4 (3)	C4—N1—C1—C2	-32.6 (5)
Br1—Zn1—N1—C4	108.4 (3)	Zn1—N1—C1—C2	-156.5 (3)
C11—C6—N3—C5	-1.6 (5)	N2—C5—C4—N1	-14.3 (6)
C7—C6—N3—C5	177.5 (5)	N3—C5—C4—N1	166.5 (4)
C11—N2—C5—N3	-0.8 (5)	N2—C5—C4—C3	-132.8 (4)
Zn1—N2—C5—N3	-174.2 (3)	N3—C5—C4—C3	47.9 (6)
C11—N2—C5—C4	179.8 (4)	C1—N1—C4—C5	-111.7 (4)
Zn1—N2—C5—C4	6.5 (5)	Zn1—N1—C4—C5	14.4 (4)
C6—N3—C5—N2	1.5 (5)	C1—N1—C4—C3	11.1 (5)
C6—N3—C5—C4	-179.2 (4)	Zn1—N1—C4—C3	137.3 (3)
N3—C6—C11—N2	1.1 (5)	C2—C3—C4—C5	133.9 (4)
C7—C6—C11—N2	-178.1(4)	C2-C3-C4-N1	14.6 (5)
N3—C6—C11—C10	-179.2 (4)	C4—C3—C2—C1	-34.0 (6)

C5—N2—C11—C6 -0.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3C···Br1 ⁱ	0.86	2.74	3.516 (4)	150
C4—H4A…Br1 ⁱⁱ	0.98	2.86	3.637 (5)	137
C1—H1A···Cg1 ⁱⁱⁱ	0.97	2.78	3.673 (6)	153

Symmetry codes: (i) *x*-1/2, -*y*+3/2, *z*-1/2; (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*-1/2, -*y*+3/2, *z*+1/2.

